

Etudes spectroscopiques en laboratoire pour la mesure des polluants atmosphériques

1- Détermination de sections efficaces UV-visible
 2- Intercalibration des spectres IR et UV

Bénédicte Picquet-Varrault Maître de conférence au LISA Université de Paris 12

Télédétection des espèces traces

La connaissance précise des concentrations des espèces traces est :

 une étape incontournable de la compréhension des processus atmosphériques

 indispensable pour suivre l'évolution sur le long terme des concentrations des espèces traces (impact des activités anthropiques, décisions par les pouvoirs publics, …)

 De nombreuses mesures spectrométriques dans différents domaines spectraux (IR, UV, micro-ondes)

Mesures satellitaires

- Mode actif ou passif
 - Passif : utilisation d'une source naturelle (atmosphère, lune, soleil, étoiles)
 - Actif : utilisation d'une source artificielle
- Visées au limb ou au nadir
- Utilisation de différents domaines spectraux
 - ≻ IR
 - > UV-visible
 - Micro-ondes
- Mesures en émission, absorption ou diffusion

Les mesures dans le domaine IR

- IRTF (+ cellule multiréflexion pour les mesures in situ)
- Tunable Diode Laser Spectroscopy (TDLS) (+ cellule multiréflexion)

FIGURE 6. Compressed plot of ATMOS/Spacelab 3 spectra in the "atmospheric window" near 11 μ m for three tangent heights. The absorption features of carbon dioxide, ozone, nitric acid, and two chlorofluorocarbons can be detected by inspection. The absorption due to sulfur hexafluoride [47] at 947.9 cm⁻¹ is not so easily discerned.

Les mesures par DOAS (UV-visible)

2009

(Differential Optical Absorption Spectroscopy)

Permet de s'affranchir de la mesure de l₀

Mesure des variations "haute fréquence" du signal (due à l'absorption des composés)
Filtre les variations "basse fréquence" du signal (diffusion par les particules, ...)

Exemple de mesure par DOAS

Carte globale de HCHO produite par GOME (Chance et al., 2000)

Quels besoins pour les mesures spectrométriques ?

1. Besoin de sections efficaces précises

- Mesures en labo de sections efficaces dans les différents domaines spectraux (UV-visible, IR, micro-ondes)
- Besoin de spectres à haute résolution pour extraire paramètres spectraux
- Dépendance en température et pression pour sondage dans les différentes couches de l'atmosphère (troposphère et stratosphère)
- ⇒ Utilisation des données expérimentales pour l'exploitation des spectres atmosphériques
- \Rightarrow Utilisation pour le calcul de spectres théoriques à n'importe quelles t° et pression

Quels besoins pour les mesures spectrométriques ?

2. Besoin de sections efficaces **cohérentes**

- Mesures simultanées de la même masse d'air par spectrométrie IR et UV-visible (depuis le sol, les satellites, …)
- Campagnes d'intercomparaison d'instruments (en atmosphère simulée)
- Combinaison des mesures IR et UV pour améliorer la résolution des profils verticaux (ex : ozone)

1- Détermination de sections efficaces UV-visible en laboratoire

Quels besoins ?

- Des besoins pour la télédétection des espèces traces
- Des besoins également pour la photochimie calcul des fréquences de photolyse des espèces traces :

$$J = \int \sigma (\lambda) \Phi (\lambda) F (\lambda) d \lambda$$

Section efficace UV Rendement quantique Flux actinique

- Besoin de sections efficaces précises (mieux que 1% pour ozone)
- Besoin d'étudier la dépendance en température et pression pour la mesure des polluants à différentes altitudes

Les principales techniques

- Les spectromètres dispersifs
- Les spectromètres à TF
- Les manips à laser accordable UV
- Les nouvelles techniques à cavité (ex : IBBCEAS)

Les spectromètres dispersifs

- Composés d'une source, d'un monochromateur et d'un détecteur
- Différents types (et génération) de détecteurs :

 $λ_1 λ_2 λ_3 λ_4 \dots$

 $\frac{1}{\lambda_1}$

- Barrette de diode acquisition sur un domaine spectral
 caméra CCD (Charge Coupled Device) gain de sensibilité + possibilité de détecter plusieurs faisceaux
 - sensibilité + possibilité de détecter plusieurs faisceaux simultanément

Les spectromètres dispersifs

⊖ Limités en résolution

☺ Besoin de balayer tout le domaine spectral

(Malicet et al, 1995) ¹³

Les spectromètres à Transformée de Fourier

③ Haute résolution (avantage de « Jacquinot »)

© Echelle des longueurs d'ondes très précise (avantage de « Connes »)

© Rapport signal / bruit (avantages de « Fellgett »)

Application

Dépendance en t° des sections efficaces de OCIO

(Kromminga et al, 2003) 15

Spectromètres à laser UV accordable

© Acquisition de spectres à haute résolution

2009

DE

RF

© Très bon rapport signal / bruit

CIIII S

Application

Mesure des sections efficaces UV de HCHO

17

La photolyse éclair pour la spectroscopie d'espèces instables

PECATM

2009

E DE RÉ

CINIS

LE DE RÉ 2009 Application à la spectroscopie de BrO Couplage photolyse laser / FTS

(Fleischmann et al, 2004)¹⁹

Application à la spectroscopie de BrO Couplage photolyse laser / FTS

DE BÉ

2003

Difficultés pour obtenir des sections efficaces précises ...

- Très difficile d'obtenir des sections efficaces précises (un vrai challenge de les mesurer avec une précision < 1% !!)
- De nombreux artéfacts instrumentaux peuvent générer des erreurs de plusieurs % (voire parfois bien plus ...)
- De plus, difficulté à quantifier le composé dans la cellule lorsqu'il est instable (radicaux, molécules réactives telles que O₃)

Instabilité de la source

- Instabilité de certaines sources UV (lampes à haute pression de Xénon) – variations d'intensité > 10%
- \Rightarrow Problème pour le calcul du spectre en absorbance ln(I₀/I)

(en particulier pour les molécules présentant de larges bandes)

- Deux solutions généralement utilisées pour limiter ce problème :
 - ✓ Utiliser un dispositif « double faisceau » pour suivre les fluctuations de la source
 - Mesurer alternativement I et I₀ à des intervalles de temps proches

Le système « double faisceau » développé au LISA

2009

- Source d'erreurs relativement fréquente ...
- Peut provenir :
 - ✓ de la lumière de la pièce (naturelle ou artificielle)
 - ✓ de la source mais provenant de photons de longueurs d'ondes différentes (diffraction d'ordres ≠ 1)
- Possibilité de corriger ces artéfacts en travaillant dans le noir et en utilisant des filtres pour limiter le domaine spectral d'émission de la lampe …

Mise en évidence de lumière parasite

26

D'où provient cette lumière parasite ?

Lumière parasite due à la grande intensité de la lampe dans le visible

Suppression de la lumière parasite

 \Rightarrow Utilisation d'un filtre (UG5) pour éliminer le rayonnement visible

28

Après élimination de la lumière parasite ...

29

Précision de l'axe des longueurs d'ondes

- Une calibration précise des longueurs d'onde est indispensable !
- Utilisation de lampes élémentaires pour calibrer l'axe des longueurs d'ondes dans le domaine spectral étudié

Quantification du composé dans la cellule

- De nombreuses sources d'erreurs lors de la quantification du composé dans la cellule - en particulier pour les composés instables
 - ✓ pertes/réactions aux parois
 - ✓ photolyse par la source UV-visible
 - ✓ Décomposition
 - ✓ polymérisation

✓ ...

- En général, quantification du composé par mesure de pression
- Possibilité d'utiliser la « chimie » pour quantifier le composé dans la cellule à l'aide d'une titration chimique

En conclusion

- Il est extrêmement difficile de produire des sections efficaces à 1% près !
- Artéfacts instrumentaux très difficiles à mettre en évidence
- ⇒ Comparer les spectres fournis par différents instruments
- ⇒ Intercalibrer les instruments et les protocoles lors de campagnes en atmosphère réelle ou simulée

par ex : intercomparaison des techniques DOAS (Camy-Peyret et al, 1996)

Les bases de données UV-visible

PERGAMON

Journal of Quantitative Spectroscopy & Radiative Transfer 82 (2003) 491-504

Journal of Quantitative Spectroscopy & Radiative Transfer

www.elsevier.com/locate/jqsrt

Ultraviolet and visible absorption cross-sections for HITRAN

Johannes Orphal^{a,*}, Kelly Chance^b

^aLaboratoire de Photophysique Moléculaire, CNRS UPR-Universite de Paris-Sud Moleculaire, Bât. 350 centre d'Orsay, Orsay, Cedex 91405, France ^bHarvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA

Received 31 January 2003; received in revised form 5 March 2003; accepted 8 March 2003

Composés listés dans HITRAN UV :

•Ozone

- Espèces halogénées : BrO, OCIO, CIO
- Espèces azotées : NO2, NO3, HONO
- formaldéhyde
- composés aromatiques

Les bases de données UV-visible

MPI Mainz UV-visible Spectral Atlas of Gaseous Molecules

http://www.atmosphere.mpg.de/enid/2295

MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules

A Database of Atmospherically Relevant Species, Including Numerical Data and Graphical Representations Hannelore Keller-Rudek, Geert K. Moortgat Max-Planck-Institut für Chemie, Atmospheric Chemistry Division, Mainz, Germany

780 composés parmi lesquels :

• Ozone

• Espèces azotées (NO, NO₂, N₂O₅, NO₃, ...)

•Composés organiques volatils (alcanes, alcènes, alcools, composés aromatiques, composés halogénés, ...)

- Composés soufrés
- Radicaux organiques

2- Intercalibration en laboratoire des spectres IR et UV

Pourquoi étudier la cohérence des sections efficaces IR et UV ?

Besoin de sections efficaces cohérentes pour :

- Mesures simultanées de la même masse d'air par spectrométrie IR et UV-visible (depuis le sol, les satellites, …)
- Campagnes d'intercomparaison d'instruments (en atmosphère simulée)
- Combinaison des mesures IR et UV pour améliorer résolution des profils verticaux (ozone)

Intercomparaison en laboratoire

 De nombreuses campagnes d'intercomparaison d'instruments en chambres de simulation – objectif : mettre en évidence d'éventuels artéfacts instrumentaux.

 Exemples de campagnes réalisées dans le cadre d'EUROCHAMP (réseau d'utilisateurs des chambres de simulation en Europe)

- HONO (DOAS, FTIR, CEAS, LOPAP, ...) Valencia, 2009
- NO₃ et N₂O₅ (DOAS, CRDS, LIF, ...) Julich, 2006
- COV oxygénés (DOAS, techn. chromatographiques) Julich, 2005
- vapeur d'eau (AquaVIT) Karlsruhe, 2007

⇒ Pour traitement des données, besoin de disposer de sections efficaces en accord dans les différents domaines

(Infos complémentaires sur le site : www.eurochamp.org) 37

Intercalibration des spectres IR et UV en labo

Pour intercalibrer sections efficaces IR et UV, 2 approches :

- Intercalibration « relative », c'est-à-dire sans détermination des sections efficaces absolues
- Intercalibration « absolue », c'est-à-dire avec mesure simultanée des sections efficaces en IR et UV

Quelles molécules ?

Composés qui font l'objet de mesures dans les 2 domaines spectraux :

✓ Ozone,

 $\checkmark NO_2$

- ✓ CO
- ✓ HCHO
- ✓ Glyoxal
- ✓ OCIO

✓ ...

Liste susceptible de s'étendre dans le futur avec l'amélioration des performances analytiques ...

Besoin d'une grande précision ...

- pour mesurer O₃ troposphérique à 10%, besoin de connaître ses sections efficaces à 1%
- pour comparer les profils + combiner les données IR/UV, besoin de cohérence des sections efficaces à mieux que 1%

Mesures dans les différents domaines spectraux

- Mesures satellitaires : techniques UV et IR à bord du même satellite, par ex :
- GOMOS (UV), SCIAMACHY (UV) et MIPAS (IR) à bord d'ENVISAT

GOME2 et IASI à bord de METOP

- Mesures au sol de la colonne total d'ozone par des spectromètres Brewer et FTIR (ex : Schneider et, 2008)
- Intercomparaison LIDAR, spectromètres UV et IRTF (Yamamori et al, 2006)

⇒ Pour comparer les profils déduits des différentes mesures, besoin de disposer de sections efficaces cohérentes dans les différents domaines

Combinaison des données satellitaires IR/UV

Depuis peu, afin d'améliorer le profil vertical d'ozone dans la troposphère, combinaisons de données IR (émission thermique à 10 µm) et UV (réflectivité dans le domaine 290-320 nm)

Exemples :

- OMI et TES à bord de EOS-AURA (*Worden et al, 2007*)
- GOME-2 et IASI à bord de METOP (Landgraf et Hasekamp, 2007)
 - 1% error in ozone line-strengths (as might be expected) causes 1-2% errors in the IR-only retrieval. However, the impact of this error is order 10% in the troposphere in the combined retrieval (due to the implied inconsistency in modelling the stratospheric contribution to the radiances in the two spectral regions). Clearly relative errors of more that 1% in molecular spectroscopy between UV and IR may well limit the usefulness of the combined retrieval.

<u>(Siddans et al, 2006)</u>

42

Etudes spectroscopiques en laboratoire

Région UV (300-350 nm)

• de nombreuses études dont les écarts atteignent 10%

• Bon accord (2%) (Orphal et al., 2003) entre certaines études : Bass and Paur, 1985; Brion et al., 1998; Bogumil et al., 2001; Burrows et al., 1999.

<u>Région IR (10µm)</u>

• 4 études récentes (*De Backer-Barilly and Barbe, 2001; Claveau et al., 2001; Wagner et al., 2002; Smith et al.* 2001) - 3 études en bon accord et une étude **4% plus élevée** mais en accord avec HITRAN 2000.

Flaud et al. 2003 (review) recommande l'utilisation des 3 études en accord \Rightarrow ré-évaluation dans HITRAN 2004

Travaux d'intercomparaison en laboratoire

Plusieurs études en laboratoire :

- Bande à 10µm / bande à 254 nm : Dufour et al, 2004, Smith et al, 2001; De Backer-Barilly et al, 2001
- Bande à 5µm / bande de Chappuis (515-715 nm) : Dufour et al, 2005
- Bande à 10µm / la bande de Huggins (300-330 nm) : Picquet-Varrault et al, 2005; Gratien, 2008

Intercalibration « relative » IR/UV

- bande à 10 µm / bande de Huggins (300-320 nm)
- Réacteur équipé de 2 voies d'analyses spectrométriques in situ

(Picquet-Varrault et al, 2005) 45

Intercalibration « relative » IR/UV

 Une vingtaine d'expériences à t° ambiante et pression atmo. avec différentes concentrations d'O₃ et différents trajets optiques

Rapports IBI_{IR} / σ_{UV}

<4% >4%

Longueurs d'ondes UV	IBI _{IR} / _{συν}		HITRA	N 2000			
(nm)	Ce travail	Malicet et al.	Bass et Paur	Bogumil et al.	Burrows et al.		
302.15	50,7 ± 0,5	51,3 ± 1,1	51,6 ± 1,6	51,9 ± 1,2	51,2 ± 1,3		
307.59	110,9 ± 0,7	110,6 ± 2,4	110,5 ± 3,4	112,2 ± 2,6	110,3 ± 2,8		
308.08	114,2 ± 0,7	113,6 ± 2,5	113,7 ± 3,5	115,4 ± 2,7	113,2 ± 2,8		
312.57	217,9 ± 2,0	214,3 ± 4,7	215,8 ± 6,7	217,0 ± 5,0	214,6 ± 5,4		
313.17	226,8 ± 2,2	$226,3 \pm 5,0$	$226,3 \pm 7,0$	$229,4 \pm 5,3$	227,3 ± 5,7		
Ecart (%)		0.3	3 0.1 -1 0				
Longueurs d'ondes UV	gueurs d'ondes UV IBI _{IR} / _{ouv} HITRAN 2004						
(nm)	Ce travail	Malicet et al.	Bass et Paur	Bogumil et al.	Burrows et al.		
302.15	50,7 ± 0,5	49,3 ± 1,1	49,6 ± 1,5	49,8 ± 1,1	49,2 ± 1,2		
307.59	110,9 ± 0,7	106,3 ± 2,3	106,1 ± 3,3	107,8 ± 2,5	106,0 ± 2,7		
308.08	114,2 ± 0,7	109,1 ± 2,4	109,2 ± 3,4	110,9 ± 2,6	108,7 ± 2,7		
312.57	217,9 ± 2,0	205,9 ± 4,5	207,3 ± 6,4	$208,5 \pm 4,8$	206,2 ± 5,2		
313.17	226,8 ± 2,2	2 217,5 ± 4,8 217,5 ± 6,7 220,4 ± 5,1 218,4 :					
Ecart (%)		4.4	4.1	3	4.5		

Intercalibration « relative » IR/UV Bande à 10µm et région 270-290 nm

CINIS

48

Intercalibration « relative » IR/UV Bande à 10µm et région 270-290 nm

2009

ILE DE RÉ

CINIS

Rapports IR/UV

Intercalibration « absolue » IR/UV

bande à 10 µm / bande à 254 nm

2009

Difficulté à quantifier O₃ dans la cellule car décomposition suivant la réaction :

$$2 O_3 \rightarrow 3 O_2$$

 \Rightarrow Ozone quantifié par mesure de la pression dans la cellule

 $p_{O3} = 2(pi-p_T)$

 \Rightarrow Validation par mesure de son absorbance à 254 nm

(De Backer-Barilly et Barbe, 2001) ⁵¹

Transmittance

Intercalibration « absolue » IR/UV

0.8						MA									
	ŧ	H H	ttt t	•	Exp	erimental a	nd Calcul	ated Intens	ities for	the ν_3 :	and	v ₁ F	Bane	ds of	¹⁶ O ₃
	*	H +1	1111 11		1	2	3	4	5	6	7	8	9	10	11
		4 1	41 14		960.8886	3.74E-23	3.48	3.60E-23	3.89	001	66	1	66	000	67
0.4		+ +			960,9292	3.01E-23	5.48	2.90E-23	3.79	001	66	2	65	000	67
					965.5214	7.51E-23	5.55	7.60E-23	-1.18	001	63	0	63	000	64
		~ ł	•		973.0981	1.89E-22	3.66	1.90E-22	-0.53	001	58	2	57	000	59
		:	*	:	974.5575	2.85E-22	2.93	2.90E-22	-1.72	001	57	0	57	000	58
		-			974.5812	2.32E-22	1.37	2.37E-22	-2.11	001	57	1	56	000	58
0,2	10 Marco 2014 - 10 - 2 1000-0000 - 10 - 20100 - 2014 - Marco 2014 - 2014				974.5986	8.86E-23	3.97	9.00E-23	-1.56	001	55	9	46	000	56
					977.3377	1.34E-22	3.85	1.37E-22	-2.19	001	53	9	44	000	54
					983.9742	4.97E-22	0.89	5.05E-22	-1.58	001	50	6	45	000	51
					984.0585	3.66E-22	1.13	3.58E-22	2.23	001	48	9	40	000	49
0					984.7408	8.13E-22	1.39	8.10E-22	0.37	001	50	3	50	000	51
1052.65	1052.75	1052.85	1052.95	1053.05	984.7946	2.03E-22	1.48	2.06E-22	-1.46	001	44	12	33	000	45
			Waya	number (cn	980.0932	8.91E-22	1.52	0.00E-22	0.34	001	49	3	40	000	50
			wave	number (en	987.2127	8.90E-22	1.22	8.81E-22	1.02	001	48	2	44	000	49
					900.0103	1.495.21	1.12	1.05E-21	1.71	001	4/	2	42	000	40
					990.1007	1.400-21	1.34	1.40E-21	1.44	001	40	-	40	000	40
					991,1447	1.235-21	1.15	1.21E-21 8 10E 22	1.40	001	44	10	30	000	40
					991,9800	8.15E-22	1.21	0.19E-22	-0.49	001	41	10	31	000	42
					994.204/	0.245-22	1.10	0.20E-22	-0.12	001	42		<u>∡o</u>	000	28
					994.3555	3.00E-21	1.10	3.09E-21	-1.14	001	43	10	43	000	44
					994.0100	0.50E-22	1.47	0.285-22	2.24	001	37	11	29	000	38
					995.5259	1.08E-22	1.47	1.06E-22	-0.09	001	36	11	20	000	30
					997 5520	3 38E-21	0.89	3.31E-21	1 42	001	40	6	20	000	41
					998 7498	2 97E-21	1 29	2.99E-21	-0.70	0.01	38	7	32	000	30
					880.7480	2.016-21	1.20	2.002-21	-0,70		50	,	Ψ£	000	99
								-						_	_

(De Backer-Barilly et Barbe, 2001)

52

12 13

2 58

0 58

1 57 9 47

9 45

6 46 9 41

3 49

3 47

5 45 5 43

4 44

0 44 10 30

11 27 11 27

5 37

7 33

12 34

Quelles conséquences pour les mesures d'ozone ?

- Bilan des études labo: désaccord de 5% pour :
 - \checkmark les valeurs de sections efficaces dans IR entre elles
 - ✓ les travaux d'intercomparaison entre eux

⇒ impossible de conclure aujourd'hui sur la cohérence des données IR et UV !

- Des mesures IR et UV de la colonne d'O₃ révèlent désaccord de 5% (Schneider et al, 2008)
- ⇒ Vive controverse au sein de la communauté des spectroscopistes De nouvelles études en labo sont nécessaires …
- ⇒ Aujourd'hui, comparaison des profils d'ozone et combinaison des données IR/UV restent problématiques

Le formaldéhyde

- Le plus abondant des composés carbonylés
- Polluant primaire et secondaire
- Source de radicaux HOx

De nombreuses campagnes d'intercomparaison au sol rassemblant les techniques :

- ✓ DOAS
- ✓ IRTF ou TDLAS
- ✓ technique chromatographique (HPLC)
- ✓ technique Hanzsch

(Hak et al, 2005; Grutter et al, 2005, ...)

Authors	Methods	Site / Project	Conc. range	Time span
Kleindienst et al. (1988)	TDLAS Si-Gel DNPH cartridges DNPH solution Hantzsch Enzyme fluorimetry	semi-rural (North Carolina, USA)	1–10 ppbv	16/06–26/06/1986
Lawson et al. (1990)	TDLAS FTIR White system DOAS White system C18-DNPH cartridges Hantzsch Enzyme fluorimetry	urban (Los Angeles metropolitan area, USA)	4–20 ppbv	13/08–21/08/1986
Trapp and de Serves (1995)	Hantzsch	tropical continental	<0.05–2 ppbv	10/09-23/09/1993
Gilpin et al. (1997)	TDLAS coil/DNPH Hantzsch Enzyme fluorimetry Si-Gel DNPH cartridges	urban (Denver/Boulder metropolitan area, USA)	1–6 ppbv	19/05-03/06/1995
lim (mar. et al. (0000)	C18-DNPH cartridges	and a state of the	0.40 mmhu	00/00 00/00/4000
Jimenez et al. (2000)	Si-Gel DNPH cartridges	area. Italv)/LOOP	0-10 ppbv	02/06-09/06/1998
Cárdenas et al. (2000)	LP-DOAS (two) TDLAS	clean maritime (Mace Head, Ireland) semi-polluted (Weybourne, UK)	<0.05–0.8 ppbv ca. 0.2–4 ppbv	28/07–07/08/1996 14/10–31/10/1996
Påtz et al. (2000)	Hantzsch TDLAS Hantzsch	continental background (Schauinsland, Germany)/ SLOPE	1–3 ppbv	22/05/1996
Volkamer et al. (2002)	Hantzsch DOAS White system	smog chamber (EUPHORE, Spain)	25-100 ppbv	April 2002
Grossmann et al. (2003)	LP-DOAS Hantzsch	rural (Pabstthum, Germany) / BEBLIOZ	0–7 ppbv	13/07-06/08/1998
Klemp et al. (2003)	Hantzsch	urban (downwind of Augsburg, Germany) / EVA	0-4 ppbv	02/03-31/03/1998
Kleffmann, pers. comm.	FTIR White system DOAS White system Hantzsch	smog chamber (EUPHORE, Spain) / DIFUSO	<0.1–100 ppbv	May/June 2000
this study	DNPH cartridges FTIR White system DOAS White system Hantzsch (five) C18-DNPH cartridges	urban (Milan, Italy) / FORMAT	1.5–13 ppbv (30 min. <i>a</i> vg.)	23/07–31/07/2002

Chrs SPECATINO

Le formaldéhyde

Etudes spectroscopiques en laboratoire

Etudes spectroscopiques en laboratoire :

Domaine UV : Désaccord de 20% entre les sections efficaces publiées

Domaine IR : Assez bonne cohérence des sections efficaces
 (4 données sur 5 en bon accord)

Le formaldéhyde

Désaccords entre les spectres UV de la littérature

59

 \Rightarrow Besoin de préciser les sections efficaces UV

 \Rightarrow Besoin de vérifier la cohérence des sections efficaces IR et UV

Pour :

- ✤ La mesure du formaldéhyde dans l'atmosphère
- ✤ Le calcul de ses fréquences de photolyse (UV)

Intercalibration « absolue » IR/UV

Réacteur du LISA

- •Réacteur en Pyrex (longueur 6 m, volume 977 L)
- spectromètrie IRTF et UVvisible à long trajet optique

Réacteur université d'Oslo

- acier inoxydable (longueur 2m, volume 250 L)
- Bruker IFS 66v FTIR
- Path length I_{IR} : 120 m

Intercalibration « absolue » IR/UV

Utilisation de la chimie pour quantifier le formaldéhyde (titration par Br)

 $Br_2 + hv \rightarrow 2 Br$ $HCHO + Br \rightarrow HCO + HBr$ $HCO + Br \rightarrow CO + HBr$ $HCO + Br_2 \rightarrow HCOBr + Br$ \rightarrow CO + HBr + Br $HCO + HCO \rightarrow HCHO + CO$ $\rightarrow 2 \text{CO} + \text{H}_2$ $HCO + O_2 \rightarrow CO + HO_2$ $HCHO + HO_{2} \leftrightarrows HOOCH_{2}O \leftrightarrows HOCH_{2}OO$ $HOCH_2OO + HO_2 \rightarrow HCOOH + O_2 + H_2$ \Rightarrow Quantification des produits de la réaction : CO et HCOOH 63 (Gratien et al, 2007)

IBI_{IR} (10⁻¹⁷ cm/molécule)

Domaine spectral (cm ⁻¹)	Ce travail	Hisatsune and Eggers, 1955	Nakanaga et al., 1982	Sharpe et al., 2004	Klotz et al., 2004	Herndon et al., 2005	
2600-3100	2.92 ± 0.10	2.1 ± 0.9	2.7 ± 0.1	2.8 ± 0.1			
1660-1820	1.31 ± 0.04	0.96 ± 0.20	1.23 ± 0.04	1.26 ± 0.08	1.25 ± 0.13	1.28 ± 0.06	

IBI_{UV} (10⁻¹⁶ cm/molécule)

Domaine spectral (nm)	Ce travail	<i>Meller and Moortgat, 2000</i>	Cantrell et al., 1990	Rogers, 1990	Smith et al., 2006	Pope et al., 2005	Co et al., 2005
300-360	1.17 ± 0.07	1.11 ± 0.05	0.9 ± 0.1	0.95 ± 0.02			
302.8-305.1	1.38 ± 0.04	1.31	1.23	1.22	1.359 ± 0.002		
313.5-316.5	1.40 ± 0.09	1.37	1.32	1.28	1.359 ± 0.010	1.43	
316.5-319.7	1.14 ± 0.06	1.02	0.98	0.94	1.122 ± 0.053	1.15	
351.7-355.5	0.44 ± 0.03	0.42	0.37	0.37			0.411

Quelles conséquences pour les mesures et la photolyse du formaldéhyde ?

- Données UV de Cantrell et al, 1990 et Rogers, 1990 sont sousestimées de 20%
- Ces données sont recommandées dans HITRAN (UV) …
- ... et utilisées pour les mesures satellitaires (GOME et SCIAMACHY) et dans certains modèles photochimiques (MOCAGE, CHIMERE)
 - Surestimation des concentrations de HCHO de 20%
 - Sous-estimation des fréquences de photolyse de 20%
- Et depuis peu, données de Meller et Moortgat recommandées dans bases de données (IUPAC, JPL)

Intercalibration IR/IR

Formaldéhyde : cohérence des sections efficaces pour les bandes IR à 5.7 μm et 3.5 μm ?

- mesure des intensités de raies absolues par IRTF haute résolution entre 1600 et 3200 cm⁻¹
- paramètres utilisés pour la production d'une liste de raies et le calcul de leur intensité

Merci de votre attention